Margaret O. James, Ph.D.
University of Florida – College of Pharmacy
Department of Medicinal Chemistry
P.O. Box 100485 Gainesville, FL. 32610
Phone 352-273-7707 Fax 352-392-9455

Peer-reviewed articles and book chapters

James, M.O. and Stacpoole, P.W. Pharmacogenetic considerations with dichloroacetate dosing. Pharmacogenomics, 17(7):743-53, 2016 PMID: 27143230.

Jahn, S.C., Solayman, M.H., Lorenzo, R.J., Langaee, T., Stacpoole, P.W. and James, M.O. GSTZ1 Expression and Chloride Concentrations Modulate Sensitivity of Cancer Cells to Dichloroacetate. Biochim Biophys Acta (Gen) 2016 Feb 2;1860(6):1202-1210. PMID:26850694

James, M.O. and Ambadapadi, S. Interactions of cytosolic sulfotransferases with xenobiotics. Drug Metabolism Reviews, 45(4):401-414, 2013. PMID: 24188364.

James, M.O., Kleinow, K.M. Seasonal influences on PCB retention and biotransformation in fish. Environmental Science and Pollution Research 21: 6324-6333, 2014 PMID 23494683

Li, W., Gu, Y., James, M.O., Hines, R.N., Simpson, P. Langae, T. and Stacpoole, P.W. Prenatal and postnatal expression of glutathione transferase zeta 1 in human liver and the roles of haplotype and subject age in determining activity with dichloroacetate. Drug Metabolism and Disposition, 40, 232-239, 2012. PMID 22028317

James, M.O., Marth, C.J. and Rowland-Faux, L. Slow O-demethylation of methyl triclosan to triclosan, which is rapidly glucuronidated and sulfonated in channel catfish liver and intestine. Aquatic Toxicology 124-125: 72-82, 2012 PMID 22926334

Sacco, J. Robertson, L.W., Lehmler, H.J., Li, W. and James, M.O. Glucuronidation of polychlorobiphenyls and UDPGA concentrations in channel catfish liver and intestine. Drug Metab Disp. 36: 623-630, 2008

James MO Stuchal LD, and Nyagode BA. Glucuronidation and sulfonation in vitro of the major endocrine-active metabolites of methoxychlor in the channel catfish, *Ictalurus punctatus*, and induction following treatment with 3-methylcholanthrene. Aquatic Toxicology 86: 227-238, 2008

Blum, J.L., Nyagode, B.A., James, M.O. and Denslow, N.D. Effects of the pesticide methoxychlor on gene expression in the liver and testes of the male largemouth bass (*Micropterus salmoides*) Aquatic Toxicology, 86: 459-469, 2008

James, M.O., Sacco, J.C. and Faux, L.R. Effects of food natural products on the biotransformation of PCBs. Environmental Toxicology and Pharmacology. 25: 211-217, 2008

Schlenk, D., James, M.O., George, S., Gallagher, E., Willett, K., van den Hurk, P. and Kullman, S. Biotransformation in fishes. In “Toxicology of Fishes”, RT DiGuilio and DR Hinton, eds. CRC Press, Boca Raton, FL, 2008 Chapter 4

Wang, L.Q. and James, M.O. Sulfonation of 17β-estradiol and inhibition of sulfotransferase activity by polychlorobiphenyls and celecoxib in Channel catfish, *Ictalurus punctatus*. Aquatic Toxicology, 81: 286-292, 2007

Stuchal, L. Kleinow, K.M., Stegeman, J.J. and James, M.O. Demethylation of the pesticide methoxychlor in liver and intestine from untreated, methoxychlor-treated and 3-methylcholanthrene-treated channel catfish (*Ictalurus punctatus*):
Evidence for roles of CYP1 and 3A family isozymes. Drug Metab. Disp. 34: 932-938, 2006

Wang, L.Q. Lehmler, H.J., Robertson, L.W. and James, M.O. Polychlorobiphenyls are selective inhibitors of human phenol sulfotransferase 1A1 with p-nitrophenol as substrate. Chemico-Biological Interactions, 159:235-246, 2006

Wang, L.Q. and James, M.O. Inhibition of sulfotransferases by xenobiotics. Current Drug Metabolism, invited review. 7: 83-104, 2006

Wang, L.Q. and James, M.O. Sulfotransferase 2A1 forms estradiol-17-sulfate and celecoxib switches the dominant product from estradiol-3-sulfate to estradiol-17-sulfate. J. Steroid Biochemistry and Molecular Biology 96(5): 367-374, 2005

Sacco, J.C. and James, M.O. Sulfonation of environmental chemicals and their metabolites in the polar bear, Ursus maritimus. Drug Metab. Disp. 33(9): 1341-1348, 2005

Wang, L-Q., Lehmler, H-J. Robertson, L.W., Falany, C.N. and James, M.O. In vitro Inhibition of human hepatic and cDNA-expressed sulfotransferase activity with 3-hydroxybenzo[a]pyrene by polychlorobiphenyls. Environmental Health Perspective, 113: 680-687, 2005

Sacco, J. and James, M.O. Glucuronidation in the polar bear (Ursus maritimus). Marine Environmental Research, 58 (2-5), 475-480, 2004.

Shroads, A.L., Henderson, G.N., Cheung, J., James, M.O. and Stacpoole, P.W. Unified gas chromatographic-mass spectrometric method for quantitating tyrosine

Wang, L.Q. , Falany, C.N. and James, M.O. Triclosan as a substrate and inhibitor of 3’-phosphoadenosine-5’-phosphosulfate sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metabolism and Disposition, 32: 1162-1169, 2004.

James, M.O. and Rowland-Faux, L. Hydroxylated polychlorinated biphenyls as poor substrates but good inhibitors of the glucuronidation and sulfonation of hydroxylated benzo(a)pyrene metabolites. Fresenius Environmental Bulletin, 12: 227-231, 2003.

Sugihara, N. and James, M.O. Binding of 3-hydroxybenzo(a)pyrene to hemoglobin and albumin. J. Biochem. Molec. Toxicol. 17: 239-247, 2003

Lou, Z. , Johnson, J.V. and James, M.O. Intestinal and hepatic microsomal metabolism of testosterone and progesterone by a 3α-hydroxysteroid dehydrogenase to the 3α-hydroxy derivatives in the channel catfish, Ictalurus punctatus. J. Steroid Biochem. and Mol. Biol. 82, 413-424, 2002.

Kleinow, K.M. and James, M.O. Response of the teleost gastrointestinal tract to xenobiotics. In "Target Organ Toxicity in Marine and Freshwater Teleosts.", W. H. Benson and D.R. Schlenk, eds. Taylor and Francis, London, New York, 2001, pp 269-362

Gadagbui, B.K.M. and James, M.O. The influence of diet of the regional distribution of glutathione S-transferase (GST) activity in channel catfish intestine. J. Biochemical and Molecular Toxicology 14: 148-154, 2000.

Gadagbui, B.K.M. and James, M.O. Activities of affinity-isolated glutathione S-transferase (GST) from channel catfish whole intestine. Aquatic Toxicology. 49: 27-37, 2000

Van den Hurk, P. and James, M.O. Sulfation and glucuronidation of benzo(a)pyrene-7,8-dihydrodiol in intestinal mucosa of channel catfish. Marine Environ. Research. 50: 11-15, 2000

Tong, Z. and James, M.O. Purification and characterization of hepatic and intestinal phenol sulfotransferase with high affinity for benzo(a)pyrene phenols from channel catfish. Archives Biochem. Biophys. 376: 409-419, 2000.

Li, C.L.J. and James, M.O. Oral bioavailability and pharmacokinetics of elimination 9-hydroxybenzo(a)pyrene and its glucoside and sulfate conjugates after administration to the American lobster, Homarus americanus. Toxicol. Sci., 57: 75-86, 2000

James, M.O., Yan, Z. †, Cornett, R., Jayanti, V.M. Henderson, G.N., Davydova, N., Katovich, M.J., Pollock, B. and Stacpoole, P.W. Pharmacokinetics and metabolism of [14C]-dichloroacetic acid in the male Sprague-Dawley rat:
identification of glycine conjugates, including hippurate, as urinary metabolites of dichloroacetate. Drug Metab. Disp. 26: 1134-1143, 1998

Boyle, S.M., Greenberg, R.M. and James, M.O. Isolation of CYP2L2 and two other cytochrome P450 sequences from hepatopancreas of the spiny lobster, *Panulirus argus*. Mar. Env. Res. 46: 21-24, 1998

James, M.O., Sikazwe, D.N. and Gadagbui, B. K.-M. Isolation of a pi class glutathione S-transferase from the intestinal mucosa of channel catfish, *Ictalurus punctatus*. Mar. Env. Res. 46: 57-60, 1998

James, M.O., Altman, A.H., Morris, K., Kleinow, K.M. and Tong, Z. Dietary modulation of phase 1 and phase 2 activities with benzo(a)pyrene and related compounds in intestine but not liver of the channel catfish, *Ictalurus punctatus*. Drug Metab. Disp. 25: 346-354, 1997

Li, C.-L. J. and James, M.O. Pharmacokinetics of 2-naphthol following intrapericardial administration, and formation of 2-naphthyl-β-D-glucoside and 2-naphthyl sulphate in the American lobster *Homarus americanus*. Xenobiotica. 27: 609-626, 1997

James, M.O., Cornett, R., Yan, Z. †, Henderson, G.N. and Stacpoole, P.W. Glutathione-dependent conversion to glyoxylate, a major pathway of dichloroacetate biotransformation in hepatic cytosol from humans and rats, is reduced in rats by pretreatment with DCA. Drug Metab. Disp. 25: 1223-1227, 1997

Boyle, S.M. and James, M.O. Cross-reactivity of an antibody to spiny lobster P4502L with microsomes from other species. Mar. Env. Res. 42: 1-9, 1996.

Altman, A.H., Buono, R.J. and James, M.O. The effect of ecdysis on DNA of the hepatopancreas and green gland of the Florida spiny lobster (Panulirus argus). Comp. Biochem. Physiol. 107B: 419-426, 1994.

James, M.O. and Kleinow, K.M. Trophic transfer of chemicals in the aquatic environment. In G. K. Ostrander and D. Malins, eds. Aquatic Toxicology: Molecular, Biochemical and Cellular Perspectives. Lewis Publishers, CRC Press, Boca Raton, 1994, pp 1-35

Barron, M.G. and James, M.O. Oral bioavailability of single and multiple doses of sulfadimethoxine to the lobster, Homarus americanus. Xenobiotica 24: 921-932, 1994.

Li C-L. J. and M.O. James. Glucose and sulfate conjugations of phenol, β-naphthol and 3-hydroxybenzo(a)pyrene by the American lobster, (Homarus americanus). Aquatic Toxicology, 26: 57-71, 1993

Winston, G.W., James, M.O. and Jewell, C.S.E. In vitro studies of benzo(a)pyrene metabolism by representatives of the class crustacea. Polycyclic aromatic Compounds. 3 (Suppl): 1079-1086, 1993.

James, M.O., Altman, A.H., Li C-L J. and Boyle, S.M. Dose and time dependent formation of benzo(a)pyrene metabolite DNA adducts in the spiny lobster, Panulirus argus. Marine Environ. Res. 34: 299-302, 1992

Ameer, B., James, M.O. and Saleh, J. Kinetic and inhibitor studies of acetaminophen and zidovudine glucuronidation in rat liver microsomes. Drug and Chemical Toxicology 15: 161-175,1992

James, M.O., Schell, J.D. †, Barron, M.G. and Li, C-L. J. Rapid, dose-dependent elimination of phenol across the gills, and slow elimination of phenyl sulfate in urine of the lobster, Homarus americanus. Drug Metab. Disp. 19: 536-542, 1991

James, M.O., Schell, J.D. †, Boyle, S.M., Altman, A. and Cromer, E. A. Southern flounder hepatic and intestinal metabolism and DNA binding of benzo(a)pyrene (BaP) metabolites following dietary administration of low doses of BaP, BaP-7,8-dihydrodiol or a BaP metabolite mixture. Chemico-Biol. Interact.79: 305-321, 1991.
Plakas, S.M. and James, M.O. Bioavailability, tissue disposition and renal excretion of benzoic acid in the channel catfish (*Ictalurus Punctatus*). Drug Metabolism Disp.18: 552-556, 1990

James, M.O. Isolation of cytochrome P450 from hepatopancreas microsomes of the spiny lobster, *Panulirus argus*, and determination of catalytic activity with NADPH cytochrome P450 reductase from vertebrate liver. Arch. Biochem. Biophys. 282: 8 - 17, 1990.

James, M.O., Schell, J.D. and Magee, V. Bioavailability, biotransformation and elimination of benzo(a)pyrene and benzo(a)pyrene-7,8-dihydrdiol in the lobster, *Homarus americanus*. Bull. MDIBL, 28: 119 - 121, 1989.

James, M.O., Cytochrome P450 monooxygenases in crustacea. Xenobiotica, 19: 1063 - 1076, 1989.

Barron, M.G. †, Gedutis, C. and James, M.O. Pharmacokinetics of sulfadimethoxine in the lobster, *Homarus americanus* following intrapericardial administration. Xenobiotica, 18: 269 - 276, 1988.

James, M.O. Acute and chronic effects of miconazole nitrate on hepatic styrene oxide hydrolase and cytochrome P-450 dependent monooxygenase activities in male and female AKR/J mice. Toxicology, 50: 269 - 281, 1988.

James, M.O. and Barron, M. G. Disposition of sulfadimethoxine in the lobster. Vet. Human Toxicology, 30: Supplement 1, 36 - 40, 1988.

James, M.O.: Conjugation of organic xenobiotics in aquatic animals. Env. Hlth. Persp. 71: 97 - 103, 1987.

James, M.O. and Pritchard, J.B.: In vivo and in vitro renal metabolism and excretion of benzoic acid by a marine teleost, the southern flounder. Drug Metab. Disp. 15:

James, M.O. and Sloan, K.B.: Structural features of imidazole derivatives which enhance styrene oxide hydrolase activity in rat hepatic microsomes. J. Medicinal Chem. 28: 1120 - 1124, 1985.

James, M.O. and Little, P.J.: 3-Methylcholanthrene does not induce in vitro xenobiotic metabolism in spiny lobster hepatopancreas, or affect in vivo disposition of benzo(a)pyrene. Comp. Biochem. Physiol. 78C: 241 - 245, 1984.

James, M.O.: Catalytic properties of cytochrome P450 in hepatopancreas of the spiny lobster, *Panulirus argus*. Marine Environmental Res. 14: 1 - 13, 1984.
James, M.O. and Little, P.J.: Modification of benzo(a)pyrene metabolism in hepatic microsomes from untreated and induced rats by imidazole derivatives which inhibit monooxygenase activity and enhance epoxide hydrolase activity. Drug Metab. Disp. 11: 350 - 354, 1983.

James, M.O.: Disposition and taurine conjugation of 2,4-D, 2,4,5-T, DDA and phenylacetic acid in the spiny lobster, Panulirus argus. Drug Metab.Disp. 10: 516 - 552, 1982.

Little, P.J., James, M.O., Bend, J.R. and Ryan, A.J.: Imidazole derivatives as inhibitors of cytochrome P-450 dependent oxidation and activators of epoxide hydrolase in hepatic microsomes from a marine fish. Biochem. Pharmacol. 30: 2876 - 2880, 1981.

Bend, J.R., James, M.O. and Pritchard, J.B.: Aquatic Toxicology. Chapter 13 in F.E. Guthrie and T.J. Perry, eds. Environmental Toxicology. Elsevier Press, New York, pp 172 - 180, 1980

Pritchard, J.B. and James, M.O.: Determinants of the renal handling of 2,4-dichlorophenoxyacetic acid (2,4-D) by winter flounder. J. Pharmacol. Exp. Ther. 208: 280 - 286, 1979.

Bend, J.R. and James, M.O.: Xenobiotic metabolism by marine and freshwater species. In: D.C. Malins and J.R. Sargent, eds. Biochemical and Biophysical perspectives

James, M.O., Foureman, G.L., Law, F.C.P., and Bend, J.R.: Perinatal development of epoxide hydrase and glutathione S-epoxide transferase in hepatic and extrahepatic tissues of the rabbit and guinea pig. Drug Metab. Dispos. 5: 19 - 28, 1977.

Guarino, A.M., James, M.O. and Bend, J.R.: Fate and distribution of the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in the dogfish shark. Xenobiotica 7: 623 - 631, 1977.

James, M.O. and Bend, J.R.: Taurine conjugation of 2,4-dichlorophenoxyacetic acid and phenylacetic acid as a major metabolic pathway in two marine species. Xenobiotica 6: 393 - 398, 1976.

