PHA 5127 Dose Optimization I, Fall 2012, Case Study IV

If you have any questions regarding this case study, do not hesitate to contact Benjamin Weber (benjaminweber@ufl.edu). Please remember that attendance of the case study lecture is mandatory.

Problem 1

5 mg Dexamethasone were administered to a 40-year old (75 kg) patient through an IV bolus injection. The clearance and volume of distribution of dexamethasone are 3.7 mL/min/kg and 0.82 L/kg, respectively. Assume a one-compartment body model and first-order elimination.

Calculate k_e, half-life ($t_{1/2}$), and AUC_{∞}.

Problem 2

A new analysis technique has enabled you to measure the drug concentration before and after the blood passes the liver. The plasma concentrations before and after the liver was passed were 6.5 and 2.4 mg/mL, respectively.

Calculate the hepatic clearance (assume a liver blood flow of 87 L/h).

Problem 3

Assume an intrinsic clearance of i) 40000 L/h and ii) 0.04 L/h. The plasma protein binding and liver blood flow are 60% and 80 L/h, respectively, for both situations.

a) Calculate the hepatic clearance for both situations
b) Predict the effect of a change in A) plasma protein binding and B) liver blood flow for both situations

Problem 4

TRUE (T) or FALSE (F)

A change in the systemic clearance will affect the volume of distribution

T F

Systemic clearance and volume of distribution are independent of each other

T F

If, for a given drug, $Q_H \gg f_u * CL_{int}$, the drug is considered to be a high extraction drug

T F

Enzyme induction always affects the hepatic clearance

T F

Plasma protein binding is dependent on liver blood flow
T F
Enzyme induction affects the hepatic clearance of low extraction drug

T F
Drugs with a high volume of distribution are always low extraction drugs

T F